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Motivation(s) and Introduction One-Step ToT (Extension) Knowledge Distillation (Extension)

e Large Language Models (LLMs), while revolutionary, are not e Our methodology is similar to that used in CoT and ToT. e We first run the LLM, GPT-40, on the entire game of 24
so suitable for tasks that require multi-step reasoning. However, we change our prompting style by introducing a dataset wo generate the data for training.
e Small Language Models (SLMs), while efficient, face the system prompt to induce ToT Reasoning, removing the need e We use a small model, SmolLM-360M, which provides a
same challenges as LLMs with multi-step reasoning tasks. for multiple input prompts like in ToT. balance between performance and computational efficiency.
e Our One-Step ToT framework reimagines the multi-step ToT e One-Step ToT achieved an accuracy of 19%, almost triple
framework into a single, structured prompt and distills the that of CoT (7%).
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distillation. We test our framework on Game of 24. —— : : JGame olzatuzze
Use numbers and basic arithmetic operations (4, —, %, /)  Steps: 4 + 8 = 12 (left: 4, 6, 12)
@ to obtain 24. Each step, you are only allowed to choose 6 —4 = 2 (left: 2, 12) Synthesized Dataset o
V two of the remaining numbers to obtain a new number. 2 x 12 = 24 (left: 24) for Fine-tuning
@ ———— Step 1: Start by considering possible operations for each Answer: (6 —4) x (4 + 8) = 24
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- {43 'él“fi“(i'f’{;4J | backtrack and attempt another. . J i) giﬁ,of“ Puzzle \ J
\ e LH??EEZEMJ Step 3: Branch out to try different orders of operations ) 3 RESPOHSe
2 and combinations, evaluating each outcome. .~
[ Thought 2: J e l Step 4: If one path doesn’t lead to a solution, backtrack /
B [ 6?{?;(2;)(21:;& J Ty J Thought 2: and try alternative operations. Filter out incorrect ™
‘, l e Gl ) {in_context _demonstrations}. SL.M’s Next responses \\ LLM’s Response
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0.47 Fraction of samples failed at each step for Model with Prompt Method Success
CoT and One-Step ToT :
icats P GPT-4 with TO prompt (Yao et al. 2023) 7.3%
CoT & ToT Replication 0.4 - GPT-4 with CoT-SC (k = 100) (Yao et al. 2023) 9%
GPT-4 with CoT (k = 1) 4%
e Tested the.CoT 5-shot promp’f from the paper on 100 § - GPT-40 with Replicated CoT (k = 1) 7,
pgtzhz![es usmgt the satTe gﬁperléngg’?zsfetup as .tfle authors, g . 6;9-28‘ GPT-40 with Replicated ToT (b = 1) 4%
with temperature set to 0.7 an -4 for consistency. . .
, P , , 4 , Original SmolLM with One-Step ToT 1%
e Replicated ToT using Breadth-Flrst Search (BFS) and varied - 0.19 Our fine-tuned SmolLLM with One-Step ToT 09,
breadth (b=1 to 5). However, unlike the paper, we used
GPT-40 to facilitate parsing of responses. .
0.1 - s - Conclusion
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Method Success 0.02 4 oy l . e We propose One-Step ToT, and demonstrated its
IO prompt (Yao et al. 2023) 7.3% 0.0 - ,1 - p - - i effectiveness over naive CoT.
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. an SLM, the SLM can achieve significant improvements and
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