
Babysitting a Small Language Model through
One-Step Tree-of-Thoughts Knowledge Distillation

Anurag Renduchintala1, Aditya Mahesh1, Zichen Zhang1, Zimo Si1, Shangjun Meng1, Samuel
Fang1

1University of Michigan
{ranurag, mahesha, zhangzzc, zimosi, shangjun, swfang}@umich.edu

Abstract

The growing computational and environmental costs of Large
Language Models (LLMs) have driven the demand for Small
Language Models (SLMs) that offer comparable reason-
ing capabilities. However, existing prompting methods, such
as Chain-of-Thought (CoT) or Multi-Step Tree-of-Thoughts
(ToT), often fail to work effectively with SLMs due to their
limited context windows and capacity. In this paper, we pro-
pose a novel approach that simplifies the ToT framework into
a One-Step ToT prompting method and leverages knowledge
distillation to transfer ToT reasoning capabilities from LLMs
to SLMs. Our methodology involves synthesizing a dataset
by prompting a GPT-4o model with the One-Step ToT frame-
work and fine-tuning an SLM, SmolLM-360M, using this
dataset. By replacing the traditional multi-step prompts with
a single, structured prompt, we enable the LLM to gener-
ate ToT-style reasoning in a more efficient format. The SLM
is then fine-tuned on these outputs to emulate the reasoning
process. Using the Game of 24 dataset as a benchmark, we
demonstrate that this approach enables SLMs to achieve com-
petitive reasoning performance over LLMs while maintaining
computational efficiency.

Introduction
Large Language Models (LLMs) have revolutionized natural
language processing (NLP), achieving remarkable success
in tasks such as translation, summarization, and question-
answering by capturing intricate patterns in human language
(Zhao et al. 2023). These models are adept at generating co-
herent and contextually appropriate text through sequential
token prediction, where each word is determined based on
the preceding context. However, this left-to-right generation
mechanism, while powerful, poses challenges for tasks that
demand multi-step reasoning or complex decision-making.

The Multi-Step Tree-of-Thoughts (ToT) is proposed to
improve logical multi-step reasoning in LLMs beyond sim-
ple prompting and other existing prompting frameworks by
attempting to break through the limitations of LLMs’ inher-
ent linearity in output generation. Yao et al. 2023 success-
fully demonstrates that generating and exploring different
thought branches allowed LLMs to achieve significant per-
formance gains in tasks that require backtracking or explo-
ration.

Despite these advancements, the immense computational
and environmental costs associated with training and de-

ploying LLMs underscore the need for more efficient al-
ternatives (Bender et al. 2021). Small Language Models
(SLMs) have emerged as a promising solution, offering a
balance between performance and efficiency (Wang et al.
2024). However, SLMs struggle with complex reasoning
tasks due to their reduced capacity, and unlike LLMs, ad-
vanced prompting techniques like CoT and Multi-Step ToT,
which rely on iterative prompts and large context windows,
are often ineffective for SLMs with limited resources.

In this paper, we first replicate the Multi-Step ToT (Yao
et al. 2023) and then introduce a novel One-Step ToT to
address these challenges. We successfully replicate Multi-
Step ToT’s performance advantage over CoT and traditional
Input-Output (IO) prompting in solving the Game of 24, a
challenging arithmetic reasoning task, and demonstrate im-
provements using GPT-4o (OpenAI 2024b) over the origi-
nal GPT-4 used in prior work. Our One-Step ToT simpli-
fies this Multi-Step ToT into a single prompt, making it suit-
able for SLM fine-tuning. Using this One-Step ToT, we dis-
till the ToT-style reasoning capabilities of LLMs into SLMs
through knowledge distillation. Using GPT-4o, we synthe-
size a dataset containing correct ToT-style reasoning and
fine-tune a much smaller model, SmolLM-360M (Allal et al.
2024).

We evaluate our new One-Step ToT and fine-tuned SLM
on the Game of 24. Our results show that when used on
LLMs like GPT-4o, the One-Step ToT enables LLMs to per-
form better than those prompted with naive CoT. We fur-
ther show that fine-tuned with a synthesized dataset, SLMs
with only 360M parameters can achieve better performance
on arithmetic reasoning than LLMs, effectively bridging the
gap between efficiency and reasoning capability. The main
contributions of this paper are as follows:

1. We replicate CoT and ToT performances using the lat-
est GPT-4o on the Game of 24, achieving higher success
rates than the GPT-4 in Yao et al. 2023.

2. We propose One-Step ToT, a simplified prompting
framework that integrates ToT reasoning into a sin-
gle structured prompt, and prove its effectiveness over
naive CoT. We demonstrate that after distilling ToT-style
knowledge into an SLM like SmolLM-360M, the SLM
can achieve significant improvements on the Game of 24
and rival LLMs like GPT-4o.

4 4 6 8 4 4 6 8 4 4 6 8

Sorry, I don’t know
the answer …

Thought 1:
4 + 8 = 12 (left: 4 6

12)

Thought 2:
6 - 4 = 2 (left: 2 12)

…

Thought 1:
4 + 8 = 12 (left: 4 6

12)

Thought 2:
6 - 4 = 2 (left: 2 12)

…

Answer: (6 - 4) * (4 +
8) = 24

Thought 1b:
4 + 8 = 12 (left: 4

6 12)

Thought 1a:
4 + 4 = 8 (left: 8

6 8)

Thought 2a:
6 + 4 = 10 (left:

10 12)

Thought 2b:
4 + 8 = 12 (left: 4

6 12)

Thought 1c:
4 + 6 = 10 (left: 4

10 8)

Thought 2c:
6 - 4 = 2 (left: 2

12)

…

Answer: (6 - 4) * (4 +
8) = 24

Answer: (6 - 4) * (4 +
8) = 24

4 4 6 8

Try a path (a pair of two
numbers), see if the remaining
numbers can possibly reach the
goal 24. If not, backtrack and

attempt another

Figure 1: Overview of all prompting methods. From left to right, Input-Output Prompting, CoT Prompting (Wei et al. 2023)
(baseline), original Multi-Step ToT Prompting (Yao et al. 2023) (replication), and our One-Step ToT Prompting (extension).

Related Work

Existing work has been done to induce multi-step and logical
reasoning in LLMs in order to improve their performance on
complex tasks.

Chain-of-Thought (CoT) CoT is one of the first attempts
to unlock reasoning in LLMs through solely prompting in-
stead of utilizing methods of finetuning. Wei et al. 2023 in-
troduce a thought process to an LLM model by dividing
an input task into several small, intermediate tasks, sub-
sequently improving LLM performance in tasks like arith-
metic, common sense, and symbolic reasoning.

Tree-of-Thoughts (ToT) CoT prompting results in a lin-
ear thought process, which may be insufficient for arithmetic
tasks that may benefit from forward exploration or back-
tracking, where specific thought processes may be pruned,
or multiple potential solutions should be explored. There-
fore, ToT (Yao et al. 2023) is developed to improve per-
formance on such tasks. ToT allows for the exploration of
multiple potential thought processes by generating different
branches of intermediate steps. This method has been shown
to improve LLM reasoning significantly in tasks requiring
creative exploration, such as Game of 24 and Crossword
Puzzles. In the rest of the paper, we often refer to this orig-
inal ToT prompting as the Multi-Step ToT to differentiate
from our proposed One-Step ToT.

Knowledge Distillation Magister et al. 2023 introduces a
CoT knowledge distillation framework to transfer reasoning
capabilities from LLMs (Teacher) to a smaller model (Stu-
dent). Their approach significantly improves performance
on arithmetic, commonsense, and symbolic reasoning tasks
by fine-tuning smaller models on CoT outputs generated
by larger Teacher models. This work demonstrates the ef-
fectiveness of leveraging CoT knowledge distillation to en-
hance reasoning in smaller models. Our project aims to use
knowledge distillation to transfer more powerful and com-
plex ToT reasoning to an SLM to improve SLM performance
further.

Background

Game of 24 Dataset Game of 24 is a mathematical rea-
soning task where the model is given four numbers and must
combine these numbers with either addition, subtraction,
multiplication, or division to output an expression that yields
24 as the result and that uses each number only once. For ex-
ample, the model is given the numbers 1, 1, 4, and 6, which
could be solved by 4×6+1−1 = 24. We choose the Game
of 24 dataset used by Yao et al. 2023, which contains 1,362
puzzles, as our benchmark for evaluating language models’
reasoning skills because this challenging task demands com-
plex explorations and backtracking.

Input: Correct Output:
Use numbers and basic arithmetic operations (+, −, ∗, /)
to obtain 24. Each step, you are only allowed to choose
two of the remaining numbers to obtain a new number.
Input: 2 9 10 12
Steps:
12 * 2 = 24 (left: 9 10 24)
10 - 9 = 1 (left: 1 24)
24 * 1 = 24 (left: 24)
Answer: (12 * 2) * (10 - 9) = 24
{four more demonstrations}.
Input: 4 4 6 8

Steps: 4 + 8 = 12 (left: 4 6 12)
6 - 4 = 2 (left: 2 12)
2 * 12 = 24 (left: 24)
Answer: (6 - 4) * (4 + 8) = 24

Table 1: An example of CoT Question-Answering for Game of 24 puzzles. In addition to the puzzle, we have five demon-
strations (5-shot prompting) encouraging the language model to output intermediate thoughts.

Chain-of-Thought Details CoT is a prompting frame-
work that can be used on LLMs to induce higher levels of
reasoning over naive Input-Output (IO) prompting. In IO,
the user will only provide the input to describe the task and
expects the final answer. In contrast, as seen in Figure 1, CoT
prompting asks the model to provide intermediary steps,
dividing the overall task into a linear progression of sev-
eral smaller tasks. The number of demonstrations given to
the model in the input is referred to as k-shot prompting,
where k describes the number of demonstrations the model
is given. In Yao et al. 2023, 5-shot prompting is used, mean-
ing five demonstrations of the Game of 24 solutions that con-
tain intermediary thought processes are presented before the
actual task is given to the model. Refer to Table 1 as an ex-
ample of using 5-shot CoT prompting to solve the puzzle.

Tree-of-Thoughts Details ToT (also referred to as Multi-
Step ToT) is a hybrid prompting and algorithmic framework
that represents the reasoning process as a search through a
tree of potential solution paths. As illustrated in Figure 1,
at each intermediate step, ToT prompts the LLM to gener-
ate several potential thought branches, resulting in a tree of
potential thought paths where each tree node represents an
intermediate reasoning state. At each step, a separate evalu-
ator model scores the likelihood of each thought branch suc-
ceeding (from Impossible to Certain) based on the current
reasoning state; a breadth parameter b indicates the num-
ber of most-likely-to-succeed thoughts to keep at each step.
ToT uses tree search algorithms such as Breadth-First Search
(BFS) or Depth-First Search (DFS) to explore and evalu-
ate thought paths, scoring them based on a utility function
to identify the best solution. ToT excels in complex, multi-
step reasoning tasks, such as mathematical problem solv-
ing, planning, and decision-making, where multiple solution
paths must be considered.

Methodology, Results, and Discussion
In this section, we replicate the effectiveness of CoT and
the original Multi-Step ToT in solving complicated Game
of 24 problems and add adaptations, such as developing our
own automatic checker and the use of GPT-4o instead of

the original GPT-4. Results reveal Multi-Step ToT’s supe-
rior accuracy, particularly with increased candidate breadth
b, achieving up to 82% success rate.

Experimental Setup
The experimental setup closely follows Yao et al. 2023, with
similar API parameters such as temperature. However,
we used GPT-4o (OpenAI 2024b) instead of GPT-4 (Ope-
nAI 2024a) to streamline the output into a structured JSON
format. This substitution also enables us to evaluate whether
advancements in the model over time led to improved solu-
tions, which our results suggest they did.

Test Set
We utilize the Game of 24 dataset. Following Yao et al.
2023, we use 100 puzzles indexed from 901 to 1,000 as our
test set, as these are identified as relatively difficult and serve
as a robust benchmark for evaluating complex problem-
solving capabilities.

CoT Replication Methods
To replicate CoT on the Game of 24, we use the dataset and
prompts in Yao et al. 2023’s codebase. We also develop our
own checker that automatically checks if the model’s an-
swer is correct, given that there can be multiple solutions
to a Game of 24 puzzle.

We use the 5-shot CoT prompting in Yao et al. 2023 as in-
put for GPT-4o to solve the test set. We implement an auto-
mated checker to evaluate the outputs for correctness. This
checker flags outputs as failed if they exhibit hallucinations,
incorrect arithmetic, or invalid solutions (e.g., failure to use
all input numbers exactly once). Additionally, it identifies
the specific steps for failed cases where the solution diverged
from reaching the target value of 24 or contained errors. We
use this checker to evaluate CoT’s success rate and failure
rates at each of the four intermediary CoT steps needed to
solve each puzzle correctly.

Due to computational, budget, and time constraints, CoT-
SC (Wang et al. 2022) and CoT using the ”best-of-k” ap-
proach (where puzzles are evaluated using CoT k times and
the best result is chosen) are not replicated.

Prompt Method Success
IO prompt (Yao et al. 2023) 7.3%
CoT-SC (k = 100) (Yao et al. 2023) 9%
Replicated CoT prompt (k = 1) 7%
Replicated ToT (b = 1) 4%

Replicated ToT (b = 3) 68%
Replicated ToT (b = 5) 82%
One-Step ToT (k = 1) 19%

Table 2: Success rates of different prompting methods.
Replicated ToT (Multi-Step ToT) achieves the best perfor-
mance as we keep more candidates at each step. Our One-
Step ToT, a more efficient prompting method that does not
require iterative prompting, beats CoT and ToT at b = 1.

Multi-Step ToT Replication Methods
We replicate the accuracy of Game of 24 by using the Multi-
Step ToT in Yao et al. 2023. We use BFS as our search al-
gorithm. At each tree node, the language model (LM) gen-
erates multiple thought candidates for the next step. The
breadth parameter b determines the number of top candi-
dates retained for further exploration at each step. We test
different values of b, including 1, 3 and 5, and compare
the results. The deliberate BFS approach also incorporates
a valuation step, where the LM classifies each thought as
“sure,” “maybe,” or “impossible” based on its potential to
lead to the solution, thus enabling the pruning of unproduc-
tive branches. We employ the same checker to evaluate the
success rates.

Results
CoT As seen in Table 2, CoT achieves an accuracy of 7%
on the Game of 24 tasks using k = 1, i.e. only running
each puzzle once and checking whether the response output
is correct.

Multi-Step ToT We test the accuracy of Multi-Step ToT
using BFS with b = 1, b = 3, and b = 5. The accuracy
increases with the number of nodes visited, as shown in Fig-
ure 2. As seen in Table 2, ToT achieves higher accuracy as
b becomes higher, closely aligning with the findings in Yao
et al. 2023, as the more candidates we keep at each step, the
more accurate the final performance.

GPT-4o improves over GPT-4 Using CoT on GPT-4o, we
achieve 7% accuracy, higher than 4% for GPT-4. Using ToT
on GPT-4o at b = 5, we achieve 82% success rate, higher
than 74% for GPT-4 reported in Yao et al. 2023.

Discussion
Our replication confirms that Multi-Step ToT delivers more
accurate and robust responses than CoT for solving the
Game of 24, and GPT-4o achieves higher success rates than
GPT-4 under the same prompting methods.

The BFS breadth parameter b significantly impacts ToT’s
performance. For b = 1, the model retains fewer candidates,
leading to faster computations but lower accuracy. On the

Figure 2: Success rate with node visited using Multi-Step
ToT framework. The accuracy increases significantly with
the number of nodes visited.

other hand, b = 5 increases the accuracy by maintaining
a more diverse set of candidate thoughts, albeit at a higher
computational cost. We also conclude that GPT-4o outputs
demonstrate improved reasoning and alignment with solu-
tion constraints over GPT-4, likely benefiting from more re-
fined training data or architecture updates.

As seen in Figure 3, our error analysis reveals that CoT
outputs often fail at the initial steps of reasoning, consistent
with the challenges of left-to-right decoding. ToT’s valua-
tion mechanism mitigates this issue by filtering unpromising
branches early in the reasoning process, resulting in signifi-
cantly higher success rates.

Extensions
In this section, we propose adaptations to the Multi-Step
ToT framework, focusing on a generalizable One-Step ToT
method suited for knowledge distillation. By integrating ToT
principles into a single prompt, One-Step ToT simplifies
computations by eliminating customized iterative prompting
that makes knowledge distillation unrealistic while achiev-
ing improved accuracy over CoT. Using One-Step ToT, we
present a knowledge distillation pipeline, showcasing how
fine-tuning an SLM enables it to rival the performance of an
LLM, offering a more efficient alternative.

One-Step ToT
Methods As seen in Table 3, for One-Step ToT, we at-
tempt to retain certain benefits of Multi-Step ToT (e.g. multi-
thought exploration and backtracking) over CoT, but replace
the original Multi-Step ToT framework described in Yao
et al. 2023 with a system prompt in addition to the in-
context demo that provides several examples. This approach
uses a pure LLM prompting approach like CoT. The sys-
tem prompt instructs the model to consider possible opera-
tions for pairs of numbers and try different paths until it is
able to reach an answer of 24. The complete prompt, which

Input: Correct Output:
Use numbers and basic arithmetic operations (+, −, ∗, /)
to obtain 24. Each step, you are only allowed to choose
two of the remaining numbers to obtain a new number.
Step 1: Start by considering possible operations for each
pair of numbers.
Step 2: Try a path (a pair of two numbers), see if the
remaining numbers can possibly reach the goal 24. If not,
backtrack and attempt another.
Step 3: Branch out to try different orders of operations
and combinations, evaluating each outcome.
Step 4: If one path doesn’t lead to a solution, backtrack
and try alternative operations.
{in context demonstrations}.
Solve the following puzzle: 4 4 6 8.

Steps: 4 + 8 = 12 (left: 4, 6, 12)
6− 4 = 2 (left: 2, 12)
2 ∗ 12 = 24 (left: 24)
Answer: (6− 4) ∗ (4 + 8) = 24

Table 3: An example of One-Step ToT Question-Answering for Game of 24 puzzles. One-Step ToT is similar to CoT in that
it only requires one prompt instead of iterative prompts for a single puzzle. However, One-Step ToT adopts system prompts that
encourages trying different paths, branching out to different combinations, and backtracking to a previous operation.

comprises the in-context demo and the system prompt, ad-
ditionally instructs the model to solve a specific puzzle and
structure its outputs in a standard format to facilitate eas-
ier parsing. Thus, unlike the original Multi-Step ToT, there
is no need for multiple input prompts. Following CoT and
Multi-Step ToT replications, we use GPT-4o as our model.

Failure Cases We conduct a failure case analysis on our
One-Step ToT compared with CoT and find that not only is
One-Step ToT more accurate, but also One-Step ToT is less
likely to fail at the first two steps.

Our testing methodology for One-Step ToT is the same as
that of the CoT and ToT testing methods. Upon obtaining a
JSON file as output from the model, we parse the output file
using the same automated ”checker” as that used before. The
checker evaluates puzzles 901-1000, flagging any incorrect
outputs, keeping track of which line had caused the failure,
and noting which condition(s) have failed.

Performance for One-Step ToT slightly differs from
that seen on CoT and ToT, though there are also many sim-
ilarities. As seen in Figure 3, like CoT, most failures in
One-Step ToT are on the first step. These failures consist of
thought processes where the model uses any of the numbers
more than once, uses any numbers not given in the original
puzzle, or evaluates the expression incorrectly. The fewest
failures occur at Step 2, and Steps 3 and 4 have almost identi-
cal amounts of failures in both CoT and One-Step ToT. How-
ever, the difference is that, though most failures are at Step 1,
there are fewer failures at Step 1 in One-Step ToT than com-
pared to the number seen in CoT. Conversely, as expected,
One-Step ToT has more correct examples than CoT; some
examples that fail at Step 1 in CoT do not fail with One-Step
ToT.

Results and Limitations As seen in Table 2, Our One-
Step ToT achieves an accuracy of 19%, almost triple
the CoT’s accuracy. As expected, One-Step ToT, a much-
simplified version that only requires one prompt rather than

Figure 3: Comparison of our One-Step ToT and CoT in
the fraction of samples failed at each step. Not only does
One-Step ToT have more correct responses, but it also has
fewer failures at the first two steps than CoT.

multiple prompts used in Multi-Step ToT, is still worse than
the best performance of Multi-Step ToT at b > 1, though it’s
more accurate than that at b = 1. This shows that there is
still room for improving the One-Step ToT prompt.

Knowledge Distillation with One-Step ToT
Synthesized Dataset We create and use a synthesized
dataset containing correct ToT-style LLM responses to fine-
tune an SLM. We first run the LLM, GPT-4o, on the entire
Game of 24 dataset of 1,362 puzzles. We then execute the
checker to extract the correct responses as the final synthe-
sized dataset for fine-tuning the SLM. The number of cor-
rect responses used is 144, which is 10.57% of the original
dataset.

Teacher (LLM)Student (SLM)

1) One-Step ToT Prompting
2) Game of 24 Puzzle

LLM’s Response
based on One-Step

ToT Prompt

1) One-Step ToT Prompting
2) Game of 24 Puzzle
3) LLM’s Response

Synthesized Dataset
for Fine-tuning

SLM’s Next
Word

Prediction

Loss
Filter out incorrect

responses

Figure 4: Our proposed knowledge distillation pipeline.
We synthesize a new dataset using the proposed One-Step
ToT on an LLM and then fine-tune the SLM to emulate the
LLM’s responses.

Finally, we divide this synthesized set into two subsets: a
training set of 129 puzzles and a validation set of 15 puz-
zles. Following (Yao et al. 2023) and previous sections, we
use the testing set of puzzles indexed from 901 to 1,000
in the original Game of 24 datasets, excluding those al-
ready included in the synthesized dataset, to evaluate the
SLM’s performance before and after our knowledge distil-
lation pipeline.

Model We use a small open-source language model,
SmolLM-360M (Allal et al. 2024). Trained on a high-quality
dataset, SmolLM-Corpus (Ben Allal et al. 2024), the model
provides a balance between performance and computational
efficiency. It has a context length of 2,048 tokens.

Hyperparameters We use Optuna (Akiba et al. 2019) to
find the best set of hyperparameters that achieve the highest
success rate on the validation set over 20 trials. The result-
ing hyperparameters are a batch size of 4 and the AdamW
optimizer (Loshchilov and Hutter 2019) with a learning rate
of 3.17× 10−5, and a weight decay of 0.06.

Loss Function Following Radford and Narasimhan 2018,
our fine-tuning process leverages a causal language model-
ing objective to optimize the SLM (Student Model)’s ability
to predict the next token in the synthesized target sequence
generated by an LLM (Teacher Model), given the preceding
tokens (as shown in Figure 4). Formally, the loss function is
defined as:

L = − 1

N

N∑
i=1

logP (yi | x1:i−1; θ) (1)

where x = {x1, x2, . . . , xi−1} represents the input to-
kens, y = {y1, y2, . . . , yN} denotes the target tokens, and θ
are the model parameters. This objective enables the model
to learn the conditional probability distribution on the token
sequences.

Results We fine-tune the model on an Nvidia A100 GPU
for three epochs. As seen in Table 4, the performance of

Model with Prompt Method Success
GPT-4 with IO prompt (Yao et al. 2023) 7.3%
GPT-4 with CoT-SC (k = 100) (Yao et al. 2023) 9%
GPT-4 with CoT (k = 1) (Yao et al. 2023) 4%
GPT-4o with Replicated CoT (k = 1) 7%
GPT-4o with Replicated ToT (b = 1) 4%

Original SmolLM with One-Step ToT 1%
Our fine-tuned SmolLM with One-Step ToT 9%

Table 4: Success rates of different models prompted using
different methods. After our proposed knowledge distilla-
tion pipeline, the SmolLM with only 360M parameters rivals
GPT-4o and GPT-4 that have trillions of parameters.

SLM improves significantly from 1% to 9% after being
fine-tuned on the synthesized dataset. Moreover, its perfor-
mance exceeds GPT-4 and GPT-4o with CoT prompting,
when the latter models have vastly more parameters. As ex-
pected, the performance is weaker than its teacher GPT-4o,
which has 19% success rate.

In addition, the Game of 24 dataset ranks the puzzles
in ascending difficulty. While our test set, puzzles indexed
from 901 to 1,000, sits on the more difficult end of the entire
dataset, the training set was collected over GPT-4o’s correct
responses on the entire dataset. We argue that if we split the
training and testing set more randomly, the performance gap
might be further reduced.

Limitations Despite employing regularization techniques,
our fine-tuned model could be overfitting to the Game of 24,
leading to reduced performance on other reasoning tasks.
However, we hypothesize that if we have enough comput-
ing power, we could fine-tune the SLM with a synthesized
dataset spanning multiple reasoning benchmarks using our
proposed pipeline to increase generalizability.

Conclusion
We introduce the One-Step Tree-of-Thoughts framework
combined with knowledge distillation to transfer reasoning
capabilities from Large Language Models (LLMs) to Small
Language Models (SLMs). Our method simplifies the Multi-
Step ToT framework into a single structured prompt and
fine-tunes SLMs using a synthesized dataset generated by
prompting an LLM. Experimental results on the Game of 24
benchmark demonstrated that this approach enables SLMs
to achieve competitive reasoning performance while main-
taining computational efficiency.

Future research could explore extending One-Step ToT to
a wider range of tasks, including creative problem-solving.
Parameter-efficient fine-tuning methods (Xu et al. 2023) can
also be used to further improve our distillation pipeline.

Societal Impact
Our extensions demonstrate the potential to equip SLMs
with reasoning capabilities that rival LLMs. SLMs, with
faster inference times and reduced environmental impact,
align with the demand for sustainable AI technologies.

References
Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; and Koyama, M.
2019. Optuna: A Next-generation Hyperparameter Opti-
mization Framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining.
Allal, L. B.; Lozhkov, A.; Bakouch, E.; von Werra, L.; and
Wolf, T. 2024. SmolLM - blazingly fast and remarkably
powerful.
Ben Allal, L.; Lozhkov, A.; Penedo, G.; Wolf, T.; and von
Werra, L. 2024. SmolLM-Corpus.
Bender, E. M.; Gebru, T.; McMillan-Major, A.; and
Shmitchell, S. 2021. On the Dangers of Stochastic Par-
rots: Can Language Models Be Too Big? In Proceed-
ings of the 2021 ACM Conference on Fairness, Account-
ability, and Transparency, FAccT ’21, 610–623. New York,
NY, USA: Association for Computing Machinery. ISBN
9781450383097.
Chen, T.; Xu, B.; Zhang, C.; and Guestrin, C. 2016. Training
Deep Nets with Sublinear Memory Cost. arXiv:1604.06174.
Loshchilov, I.; and Hutter, F. 2019. Decoupled Weight De-
cay Regularization. arXiv:1711.05101.
Magister, L. C.; Mallinson, J.; Adamek, J.; Malmi, E.; and
Severyn, A. 2023. Teaching Small Language Models to Rea-
son. arXiv:2212.08410.
OpenAI. 2024a. GPT-4 Technical Report.
arXiv:2303.08774.
OpenAI. 2024b. GPT-4o System Card. arXiv:2410.21276.
Radford, A.; and Narasimhan, K. 2018. Improving Lan-
guage Understanding by Generative Pre-Training.
Wang, F.; Zhang, Z.; Zhang, X.; Wu, Z.; Mo, T.; Lu, Q.;
Wang, W.; Li, R.; Xu, J.; Tang, X.; He, Q.; Ma, Y.; Huang,
M.; and Wang, S. 2024. A Comprehensive Survey of
Small Language Models in the Era of Large Language Mod-
els: Techniques, Enhancements, Applications, Collaboration
with LLMs, and Trustworthiness. arXiv:2411.03350.
Wang, X.; Wei, J.; Schuurmans, D.; Le, Q.; Chi, E. H.;
and Zhou, D. 2022. Self-Consistency Improves Chain
of Thought Reasoning in Language Models. ArXiv,
abs/2203.11171.
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Ichter, B.;
Xia, F.; Chi, E.; Le, Q.; and Zhou, D. 2023. Chain-of-
Thought Prompting Elicits Reasoning in Large Language
Models. arXiv:2201.11903.
Xu, L.; Xie, H.; Qin, S.-Z. J.; Tao, X.; and Wang, F. L.
2023. Parameter-Efficient Fine-Tuning Methods for Pre-
trained Language Models: A Critical Review and Assess-
ment. arXiv:2312.12148.
Yao, S.; Yu, D.; Zhao, J.; Shafran, I.; Griffiths, T. L.;
Cao, Y.; and Narasimhan, K. 2023. Tree of Thoughts:
Deliberate Problem Solving with Large Language Models.
arXiv:2305.10601.
Zhao, W. X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.;
Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; Du, Y.; Yang, C.;
Chen, Y.; Chen, Z.; Jiang, J.; Ren, R.; Li, Y.; Tang, X.; Liu,

Figure 5: Training loss of SmolLM-360M Knowledge Dis-
tillation with the number of steps. The loss converges
quickly because of the small size of our synthesized dataset,
and we stop the fine-tuning early to avoid over-fitting the
model to the Game of 24 benchmark.

Z.; Liu, P.; Nie, J.-Y.; and Wen, J.-R. 2023. A Survey of
Large Language Models. arXiv:2303.18223.

Individual Contributions
All authors contributed equally to this work.

Zichen Zhang: Proposed and implemented the prompting
for One-Step Tree-of-Thoughts; implemented the knowl-
edge distillation pipeline; evaluated the original SmolLM-
360M and the fine-tuned one on the Game of 24 test set and
recorded the success rates; created Figure 1, Figure 4, Ta-
ble 3, Table 1, Table 4 and Table 2 in the paper; wrote part
of the introduction, related works, extensions, conclusions
and appendix sections in this paper.

Shangjun Meng: Revised the original ToT codebase for
compatibility with latest OpenAI python module; replicated
ToT results with Zimo, generated/synthesized training data
for finetuning of the SLM with OpenAI API and scripting;
optimized hyperparameters for finetuning, implemented and
ran actual finetuning on Google Colab and produced Fig-
ure 5; wrote part of Extensions (Knowledge Distillation) of
the current paper.

Adi Mahesh: Wrote the main draft for the methodology,
results, and discussion section in this paper, along with help-
ing to code for the CoT/ToT results for the replication sec-
tion by identifying correct answers for each puzzle.

Samuel Fang: Wrote part of the introduction, back-
ground, and related work sections for the paper; helped code
the CoT replication section and verification of CoT perfor-
mance compared to the original paper.

Zimo Si: Wrote ToT replication, ToT result, part of back-
ground and abstract; coded the ToT replication section and
generated the result of ToT performance; created Figure 2 in
the paper.

Anurag Renduchintala: Implemented the testing frame-
work (the automated ”checker”) that evaluated GPT-4o’s
thought process for a given puzzle, and used it to test the

model’s responses for One-Step ToT. Wrote the extensions
section of the paper, describing the procedure and results
obtained, along with a figure that compares CoT and our
One-Step ToT framework.

Appendix
Implementation Details
Our datasets and implementation details are publicly avail-
able at https://github.com/zichenzhang04/slm-tot.

Knowledge Distillation Details
As seen in Figure 5, we stop the training at the 99th step
to avoid over-fitting the model to the Game of 24. Due to
the relatively small size of our training set, the training loss
converges rather quickly.

To save GPU RAM, we use gradient checkpointing (Chen
et al. 2016). Instead of storing all intermediate activations
in memory, the model recomputes them on-the-fly during
backpropagation.

